Analysis of SO₂ Measurement Accuracy by Multiwavelength DIAL

Taro Denshi* a) Member, Hanako Denki** Non-member

This paper presents two multiwavelength methods to improve the accuracy of a DIAL system for measuring SO₂ in the lower atmosphere: a dual-DIAL method using three or four wavelengths, and a curvefitting method using five wavelengths. By the selection of appropriate wavelengths, these methods can eliminate the effects of ozone and aerosols. Since there is no significant difference in accuracy between the four wavelength dual-DIAL and curvefit methods, the former is advantageous for SO₂ detection in view of the measurement and data processing speeds.

Keywords: laser radar, SO₂, DIAL, multiwavelength differential absorption

1. Introduction

LIDAR (Light Detection And Ranging) has been used for measurement of atmospheric pollutants by Raman scattering, resonant fluorescence, and differential absorption (1). Fig. 1 is a schematic diagram of a LIDAR system. This apparatus transmits laser radiation into the atmosphere, collects light backscattered by atmospheric molecules and particulates using a receiving telescope, and converts it to an electric signal using a photodetector such as a photomultiplier tube. The measurement height is obtained from the time delay between illumination and detection. Therefore, to measure the height profile one measures the received photon counts as a function of time delay relative to illumination using a multichannel scaler. The measurement range resolution ΔR is determined by the time width of the channel Δt=2ΔR/c, where c is the speed of light. The smaller the time Δt, the better the range resolution, but the photon count per channel becomes less and the relative error larger.

This paper examines DIAL (Differential Absorption Lidar), a method to obtain the concentration profile of the measurement target molecule from the backscatter intensity at two or more illumination wavelengths. The measurement target is atmospheric SO₂, which is a substance causing acid rain. Until now, measurements of atmospheric SO₂ have been limited mainly to cases of localized SO₂ concentrations, e.g. smokestack exhaust and volcanic eruptions (2)-(4). In these cases, the SO₂ concentration is over 100 ppb, therefore the measurement was relatively easy and the measurement accuracy was not a problem. However, when measuring SO₂ in the ambient atmosphere, its concentration is of ppb order, and the measurement accuracy becomes an issue. We performed a theoretical analysis of the measurement accuracy of conventional two-wavelength DIAL, and indicated the necessity of eliminating effects due to ozone and other substances which cause measurement error (5). In this paper, we examined the measurement accuracy of dual-DIAL methods using three or four wavelengths (consisting of a combination of two two-wavelength DIAL pairs) and a curvefit method using five wavelengths.

2. Multiwavelength Differential Absorption

2.1 Fundamentals of DIAL

The received energy for a LIDAR is given by the following LIDAR equation:

\[E_i(R, \lambda, \Delta R) = \left[E_o \eta A \right] \frac{\Delta R}{R} \beta_i(R) \times \exp \left[-2 \frac{\Delta t}{c} \left(\alpha_o + \alpha_i \right) R + \Delta R \right] \]

\[\frac{\Delta R}{R} \]

Here \(E_i(R, \lambda, \Delta R) \) is the backscattered photon energy received from range \(R \) and \(R+\Delta R \) from the illumination laser, \(\lambda_i \) the illumination wavelength, \(E_o \) the illumination energy, \(\eta \) the optical efficiency of the

Fig. 1. Schematic diagram of a LIDAR system.

Conclusion

In this paper, we calculated the error due to ozone and aerosols in measurement of SO₂ concentrations of ppb order using DIAL. The statistical error of the return signal and background noise can
be overcome by improving the system constant (laser output, receiver area, optical efficiency of the receiver). On the other hand, systematic errors due to ozone and aerosols are inherent in the measurement method, and cannot be eliminated solely by improving the system constant. In conventional two-wavelength DIAL, the systematic error is over 1.5 ppb and the measurement accuracy is insufficient. In order to improve the measurement accuracy, a multiwavelength differential absorption method using three or more wavelengths is effective. In this paper we have considered dual-DIAL methods using three or four wavelengths and a curvefit method using five wavelengths, and indicated that the measurement errors due to ozone and aerosols can be reduced relative to conventional DIAL or eliminated. When these methods are compared, four-wavelength dual-DIAL is superior in view of measurement accuracy and measurement/processing speeds.

Acknowledgement
This research was supported by aaa.

References

