試験電圧標準
[改訂]（JEC-0102-2010）


この間、公称電圧1000kV送電の技術開発が進められ、こう（電）長430kmの公称電圧1000kV設計送電線が建設されるとともに、1996年から開始された1000kV変電機器実証試験において試験電圧の妥当性が確認された。また、2010年に改訂されたI E C 60071-1:2011 Ed. 8 Insulation co-ordination-Part 1: Definitions, principles and rulesでは、機器最高電圧1100kVの試験電圧が規定されているが、この規格には、日本から提案した試験電圧が採用された。

一方、公称電圧66〜154kV以下の非有効および非接地系の機器については、公称電圧154kV以下用のJ E C -2373-1998（ガス絶縁タンク形避雷器）の制定により、低減された保護レベルが規定され、標準的に試験電圧の低減が可能となった。また、1線接地時で遮断器の再投入を行わない公称電圧22kVケーブル系統では、EMTP（Electromagnetic Transients Program）解析を用いて絶縁設計の合理性検討が行われ、試験電圧の低減が可能となった。

このような情勢のもと使用者および製造者の要望に応えるために、試験電圧基準特別委員会は2007年3月に規格の改訂作業に着手し、2010年4月に法案を得て、2010年7月14日に電気規格調査会規格委員総会の承認を経て、本規格が制定された。

JEC-0102-1994と比較して主な改訂点は以下のとおりである。

（1）対地いんバールス試験電圧値として、公称電圧154kV以下の非有効接地系については、近年のガス絶縁間取装置の普及、および避雷器の高性能化を踏まえて、ガス絶縁電気所の機器を対象に、前規格で規定した値よりも低減した試験電圧値を導入した。

（2）公称電圧154kV以下の非有効接地系については、低減した雷インパルス試験電圧値を採用する機器に対して、前規格で規定した値よりも低減した商用周波試験電圧値を導入した。

（3）GIS、変圧器などの三相一括形機器の相間絶縁については、相間開閉過電圧レベルが高く、対地いんバールスまたは商用周波耐電圧試験ではこれに対する絶縁検証が不可能な場合があり、あらためて規定する必要があることが判明したが、現時点では機器の相間の絶縁特性データが不足しているとともに合理的な試験法が確立されていないことなどから、規格化するには至らなかった。しかし、今回の改訂で、公称電圧66〜154kVの対地試験電圧を低減した場合、当該電圧階段のGISについて相間の絶縁強度をより明確にする必要があることから、GISの相間開閉過電圧に対する裕度の考え方、GISの相間/対地の絶縁強度に対する考え方、GISの相間インパルス試験電圧の記載方法、GISの雷インパルスから開閉インパルスへの換算係数などをそれぞれ見直した。

（4）公称電圧22kVケーブル系統においては、1線接地時の一再投入不要に全面ケーブル系統を前提に、前規格で規定した値よりも低減した試験電圧値（雷インパルス耐電圧試験および商用周波耐電圧試験）新たに追加した。

（5）公称電圧1000kV用機器に対する対地雷インパルス耐電圧試験、商用周波耐電圧試験を新たに規定した。また、公称電圧1000kVで想定される単相機器の対地開閉過電圧については、雷電圧のほうが絶縁性能上適切であり電気試験耐電圧試験で代替が可能であると考えた上で、公称電圧187〜500kVに同様、開閉インパルス耐電圧試験電圧は規定しなかった。

（6）この規格の改訂にあたっては、I E C 60071-1 Ed. 8 Insulation co-ordination-Part 1: Definitions, principles and rulesと極力整合するように配慮しつつ作業を進めめた。しかしながら、試験基準や中性点接地方式に差異があると、絶縁強度の基準となる避雷器の特性や配置の考え方等を異に想定されることなど、我が国固有の事情を勘案した結果、必ずしもIEC規格と整合をとることができない場合があった。

なお、この規格の決定に際しては、電気システムの運用条件および避雷器の保護特性や配置を正確に考慮した上で、最先端的な試験手法を考案し、雷電圧を予測した。更に、解析で得られた値に対して絶縁特性に与える諸因子の影響評価を行い、試験電圧を設定した。